
International Journal of Theoretical Physics, Vol. 38, No. 11, 1999

Destruction of Fermion Zero Modes on Cosmic
Strings

Stephen C. Davis1
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I examine the existence of zero-energy fermion solutions (zero modes) on cosmic
strings in an SO(10) grand unified theory. The current-carrying capability of a
cosmic string formed at one phase transition can be modified at subsequent phase
transitions. I show that the zero modes may be destroyed and the conductivity
of the string altered. I discuss the cosmological implications of this, and show
that it allows vorton bounds to be relaxed.

1. INTRODUCTION

Cosmic strings, which are a type of topological defect, arise in many

grand unified theories. Large quantities of them may be produced at phase

transitions in the early universe. A network of cosmic strings could explain

the observed anisotropy in the microwave background radiation and the large-

scale structure of the universe [1 ].

It has been realized in the past few years that cosmic strings have a far
richer microstructure then previously thought [2 ]. In particular, the presence

of conserved currents in the spectrum of a cosmic string has profound implica-

tions for the cosmology of the defects. In this paper I examine currents with

fermion charge carriers, particularly massless ones.

Currents may provide a method of detecting strings. If they form at high-
energy scales and are charged, the resulting electromagnetic field may be

detectable [3]. Decaying currents may explain observed high-energy cosmic

rays [3, 4], and could also provide a mechanism for baryogenesis [11, 5 ].

There are several processes which can create currents on strings. These include

interaction with the plasma and collisions between cosmic strings. Charged
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currents can also be generated by magnetic or electric fields. Stable relics,

vortons, can form as collapsing string loops are stabilized by the angular

momentum of the trapped charge carriers [6 ]. If they form at high-energy
scales, these relics can dramatically alter the evolution of string networks.

Vortons formed at low energies may provide a dark matter candidate [1].

As the universe expands, a network of cosmic strings will stretch, sug-

gesting that its energy density will grow relative to everything else. This

would lead to the universe becoming string-dominated, which is strongly

ruled out by observation. More careful analysis shows that loops of string
will break off from the network. These then contract, losing energy by

gravitational radiation. This avoids string domination. If the loops are stabi-

lized by conserved currents, this mechanism fails, allowing the corresponding

theory to be severely constrained [7 ].

The cosmological implications of the vortons are most pronounced when

the universe has become matter-dominated. If they decay during the era of
radiation domination, the cosmological catastrophe may be avoided and the

vorton bounds evaded. It has recently been realized that subsequent phase

transitions can have a considerable effect on the microphysics of cosmic

strings. Massless fermion currents on cosmic strings can be both created [8 ]

and destroyed [9]. In this paper I examine the destruction of such currents
in grand unified theories with an SO(1 0) symmetry group.

I describe a simple cosmic string model in Section 2, and show that it has

zero-energy fermion solutions, called zero modes. This result was originally

derived by Jackiw and Rossi [10]. I then show how the zero-mode solutions

can be extended to massless currents.

In Section 3 I discuss the fate of zero modes on strings formed in an
SO(10) grand unified symmetry [9 ]. At high temperatures the theory resembles

the toy model of Section 2. I investigate the implications of the electroweak

phase transition for the zero modes, and show that they do not survive it.

I consider the implications of spectral flow in Section 4, and deduce

that the currents acquire a small mass. The string current can now dissipate.

This allows vortons to decay and weakens the cosmological bounds on such
models [11 ]. An important feature that allows zero modes to be removed is

the presence of a massless particle that mixes with the zero mode after the

transition. Finally, I summarize the conclusions.

2. FERMION ZERO MODES ON AN ABELIAN COSMIC STRING

The Abelian Higgs model has the Lagrangian

+ 5 (D m f )*(D m f ) 2
1

4
F m n F

m n 2
l
4

( ) f ) 2 2 h 2)2 (1)
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with F m n 5 - m A n 2 - n A m . As well as the usual f 5 const solution, it has

cosmic string solutions of the form

f 5 h f (r)e in u (2)

A m 5 n
a(r)

er
d u

m (3)

In order for the solution to be regular at the origin, f ( 0) 5 a( 0) 5 0. If the

solution is to have finite energy, f (r) and a(r) must tend to 1 as r ® ` . The

resulting string is the well-known Nielsen±Olesen vortex [12]. It turns out
that f and a take their asymptotic values everywhere outside of a small region

around the string. Thus ) f ) is constant and A m is pure gauge away from the

string. The size of this region is of order h 2 1.

Consider an extension of (1) to include a two-component fermion, with

charge 1/2. The extra terms in the Lagrangian will then be

+fermions 5 c Å i s m D m c 2
1

2
[igY c Å f c c 1 (h.c.) ] (4)

where s m 5 ( 2 I, s i), D m c 5 ( - m 2 1±2 ieA m ) c , and c c 5 i s 2 c * is the charge

conjugate of c . This gives the field equations

1 2 ei u F - r 1
i

r
- u 1 n

a(r)

2r G - z 1 - t

- z 2 - t e 2 i u F - r 2
i

r
- u 2 n

a(r)

2r G 2 c

2 mf f (r)ein u c * 5 0 (5)

where the expressions (2) and (3) have been substituted for f and A m , and
mf 5 gY h .

Following previous work by Jackiw and Rossi [10], we look for solutions

with no z or t dependence. Such solutions will have zero energy and are

called zero modes. We can see from (5) that they can also be taken as

eigenstates of s 3. The angular dependence of a solution satisfying s 3 c 5 c
can be separated out with the ansatz

c (r, u ) 5 1 10 2 (U(r) eil u 1 V*(r) ei(n 2 1 2 l) u ) (6)

l is an arbitrary integer. We will consider the case 2l 5 n 2 1 separately.

The field equations (5) imply
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1 - r 2
l

r
1

na(r)

2r 2 U 1 mf f V 5 0

1 - r 2
n 2 1 1 l

r
1

na(r)

2r 2 V 1 mf f U 5 0 (7)

Analytic solutions to these equations cannot generally be found. However,

it is possible to determine the number of physical solutions by considering
their asymptotic form.

At large r we can approximate f and a by 1. Then (7) can be solved

with modified Bessel functions, which are asymptotically equal to

e 6 mfr / ! r. We are interested in normalizable solutions, with * ) c ) 2 d 2x finite,

so only the decaying solution is acceptable.
When r is small, we can neglect f and a. To first order the solutions of

(7) are determined by the angular dependence of (6)

U , r l, V 5 O(r l 1 1)

V , r n 2 1 2 l, U 5 O(r n 2 l) (8)

In order to match up with the one acceptable large-r solution, both the

small-r solutions must be regular. This will only be true if 0 # l # n 2 1.

This suggests there are n solutions of (7) if n . 0 since there are n choices

of l. In fact we have counted each solution twice, since putting l ® n 2 1
2 l in (6) gives an equivalent ansatz. For every real solution of (7) there is
also an imaginary one. This gives a total of n real solutions.

The above analysis needs modification when l 5 n 2 1 2 l. We can

set V* 5 U in (6), giving the single equation

1 - r 2
l

r
1

na(r)

2r 2 U 1 mf f U* 5 0 (9)

This can be solved analytically. The solution which is well-behaved at large

r is

c (r, u ) 5 1 10 2 r l exp 1 2 #
r

0

mf f (s) 1 n
a(s)

2s
ds 2 (1 0)

This is regular at r 5 0 if l 5 (n 2 1)/2 $ 0.

Similar analysis can be applied to the solutions satisfying s 3 c 5 2 c .
We find a total of ) n ) solutions, which are all eigenstates of s 3. Their eigenval-

ues are 1 1 if n . 0, and 2 1 if n , 0. All the solutions decay exponentially

outside the string, and so are confined to it. They can be regarded as fermions

trapped on the string.
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We can see from (5) that the solutions can easily be extended to include

z and t dependence. This is achieved by multiplying c by a (z, t), which

satisfies ( - z 7 - t) a 5 0, depending on whether s 3 c 5 6 c . Thus the trapped
fermions move at the speed of light in the 6 z direction.

These currents are conserved, and the string acts as a perfect conductor.

While zero modes have very little cosmological significance, the lightlike

currents can have dramatic consequences.

3. AN SO(1 0) GUT WITH STRINGS

One example of a phenomenologically credible grand unified theory

(GUT) has the symmetry breaking

SO(1 0) ®
F 126

SU(5) 3 Z2

®
F 45

SU(3)c 3 SU(2)L 3 U(1)Y 3 Z2

®
F 10

SU(3)c 3 U(1)Q 3 Z2 (11)

The discrete Z2 symmetry allows the formation of topologically stable cosmic

strings. One possibility is an Abelian string, similar to that described in

Section 2,

F 126 5 ein u f 0 f (r) (12)

X u 5
n

! 10

a(r)

er
(13)

f 0 is the usual VEV of F 126, and X is a GUT gauge field broken by F 126.

The only stable Abelian strings have ) n ) 5 1, but higher winding number

strings may have long lifetimes. Non-Abelian strings also form in this model,

but they do not have zero modes at high temperatures, and I will not consider

them here [9].

The string gauge field has a nontrivial effect on the electroweak Higgs
field F 1 0. The components of F 1 0 have charges 6 1/5 with respect to the

generator of the GUT gauge field X. If n is high enough, it is energetically

favorable for F 10 to wind like a string,

F 10 5 Hue
im u hu(r) 1 Hde

2 im u hd(r) (14)

Z u 5 ! 5

8 1 m 2
n

5 2 b(r)

er
(15)

where Hu and Hd are the usual VEVs of the components of F 1 0. Whether
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F 10 winds or not, a nonzero electroweak gauge field is required to give a

vanishing covariant derivative outside the string. The solution satisfies the

boundary conditions hu( ` ) 5 hd ( ` ) 5 b( ` ) 5 1, b(0) 5 0, and hu( 0) 5
hd ( 0) 5 0 if m Þ 0. If m 5 0, hu and hd are small, of order ) Hu,d ) / ) f 0) [9 ].

m is determined by the GUT string, and is equal to the nearest integer to n/

5, so the electroweak Higgs field does not wind around a topologically stable

Abelian string. The region of electroweak symmetry restoration is inversely

proportional to the electroweak scale, so is far greater than the string core.

The fermion sector of the SO(10) GUT contains all the Standard Model
fermions, and an extra right-handed neutrino for each family. For simplicity

I will just consider the string’ s effect on just one family, although it is easy

to generalize the results. Of the three Higgs fields, only F 126 and F 10 can

couple to fermions. Only right-handed neutrinos couple to f 0, while neutrinos

of either helicity couple to Hu. As the gauge symmetry unifies left- and right-

handed particles, it is convenient to express everything in term of left-handed
spinors. I will use n 5 vL and n c 5 i s 2 n Å T

R to express neutrino terms. Defining

c ( n ) 5 ( n c, v)T, the resulting neutrino mass terms are

c Å ( n ) 1 mGUT f (r)ein u muhu(r)e
im u

muhu(r)e
im u 0 2 c ( n ) (16)

mu , ) Hu ) , 1 MeV is the up-quark mass and mGUT , ) f 0) , 1016 GeV.

Since e 5 mu/mGUT ¿ 1, the neutrino mass eigenvalues outside the string are

mR 5 mGUT
! 1 1 4 e 2 1 1

2
’ mGUT

mL 5 mGUT
! 1 1 4 e 2 2 1

2
’

m2
u

mGUT

(17)

The mass eigenstates are then approximately n c 1 e n and n 2 e n c. This

illustrates the seesaw mechanism [13 ]. Although the neutrinos have the same

couplings to the electroweak Higgs field as the up quark, the GUT Higgs
ensures that n R is superheavy and n L is very light, as is required to agree

with observation. Recent measurements have suggested that n L does indeed

have a small mass [14 ].

At high temperatures only F 126 is nonzero and mu 5 0. The model then

reduces to the toy model discussed in Section 2, with c 5 n c. Thus ) n ) right-

handed neutrino zero modes exist on the string. This implies that such strings
always have conserved currents at high temperatures. These could allow

vortons to be formed. If string loops formed at this energy scale do not decay,

their evolution will lead to serious conflict with observations of the present

universe [7 ].
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The situation is more complex for the neutrino fields at low temperatures

since they couple to two Higgs fields at the same time. As in Section 2, we

will first look for solutions satisfying s 3 c 5 c . With respect to the generator
of the X gauge field, n has charge 3/10. It has the same charge as F 1 0 with

respect to the Z generator. The resulting field equations are

ei u 1 - r 1
i

r
- u 1

n

2

a(r)

r
n c 1 muhu(r)e

im u n * 1 mGUT f (r) ein u n c* 5 0 (18)

ei u 1 - r 1
i

r
- u 2

3n

10

a(r)

r
1 F m 2

n

5 G b(r)

r 2 n 1 muhu(r) eim u n c* 5 0 (19)

Although Jackiw and Rossi did not consider this case, it can be approached

using a similar method to theirs. The angular dependence can be removed

with the substitutions

n c 5 1 10 2 (Ueil u 1 V* ei(n 2 1 2 l) u ) (2 0)

n 5 1 10 2 (W* e 2 i(m 1 1 1 l) u 1 Y e 2 i(m 1 n 2 l) u ) (21)

(The case 2l 5 n 2 1 will be considered later.) The resulting four complex
differential equations are

1 - r 2
l

r
1

na(r)

2r 2 U 1 muhu(r)W 1 mGUT f (r)V 5 0 (22)

1 - r 2
n 2 1 2 l

r
1

na(r)

2r 2 V 1 muhu(r)Y 1 mGUT f (r)U 5 0 (23)

1 - r 1
m 1 1 1 l

r
1

(1 0m 2 2n)b(r) 2 3na(r)

10r 2 W 1 muhu(r)U 5 0 (24)

1 - r 1
m 1 n 2 l

r
1

(1 0m 2 2n)b(r) 2 3na(r)

10r 2 Y 1 muhu(r)V 5 0 (25)

Splitting these equations into real and imaginary parts gives two identical

sets of four real equations, and so it is only necessary to look for real solutions.
When r is large, hu , f, a, and b are all approximately 1. As with (7),

rearrangement of (22)±(25) reduces them to modified Bessel equations at

large r. The four independent solutions are proportional to e 6 mRr / ! r and

e 6 mLr / ! r, so only two of them are normalizable.
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For small r, hu , r ) m ) , f , r ) n ) , and the gauge terms are of order r. Thus

we can ignore them when finding the leading-order terms of the small-r
solutions of (22)±(25). The dominant terms of the four independent solu-
tions are

r l, r n 2 1 2 l, r 2 m 2 1 2 l, r l 2 n 2 m (26)

If w is a solution of (22)±(25) for all r, which is normalizable at r 5
` , then it will have to match some combination of the two normalizable

solutions for large r. At r 5 0, w will be made up of a combination of the

solutions in (26). So if w is to be normalizable everywhere, at least three of

the solutions (26) must be well behaved at r 5 0. Thus for each l satisfying

three of the inequalities l $ 0, l # 2 m 2 1, l # n 2 1, and l $ n 1 m,
there will be one normalizable solution. If l satisfies all four, there will be

two solutions. Not all of these solutions are independent since the real (or

imaginary) solutions for l 5 l8 and l 5 n 2 1 2 l8 are proportional.

For l 5 (n 2 1)/2 the angular dependence of (18) and (19) is removed

with the substitutions

n c 5 U eil u , n 5 W* e 2 i(m 1 1 1 l) u (27)

giving (after dropping gauge terms) the equations

1 - r 2
l

r
1

na(r)

2r 2 U 1 muhu(r)W 1 mGUT f (r)U* 5 0 (28)

1 - r 1
m 1 1 1 l

r
1

(1 0m 2 2n)b(r) 2 3na(r)

10r 2 W 1 muhu(r)U 5 0 (29)

The two real solutions have the asymptotic forms e 2 mRr / ! r and

emLr / ! r, while the two imaginary solutions are emRr / ! r and e 2 mLr / ! r. The

leading-order terms of the small-r solutions (real or imaginary) are

r l, r 2 m 2 1 2 l (3 0)

Matching large- and small-r solutions reveals that in this case there is one

real and one imaginary solution if 0 # l # 2 m 2 1.

Combining all the above results gives a grand total of 2m (m real and

m imaginary) normalizable solutions if m . 0, and 0 otherwise. Surprisingly,

this does not depend on n. A similar approach can be applied to the other

components of n c and n to give 2 2m normalizable solutions, provided m ,
0. Hence there are 2 ) m ) possible neutrino zero modes after electroweak

symmetry breaking. Examination of the asymptotic zero-mode solutions

reveals that they are confined to the region of electroweak symmetry

restoration.
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Since ) 2m ) , ) n ) , some of the zero modes will be destroyed. For a stable

n 5 1 string all zero modes are destroyed. Thus, since higher n strings almost

certainly decay, there are zero modes before, but not after the electroweak
phase transition. The neutral current in the string disperses [15] and any

vortons formed would dissipate after about 102 10 sec [11 ]. Before the electro-

weak phase transition from about 1010 GeV to 102 GeV the universe would

undergo a period of matter domination. Once the vortons dissipate there would

be some reheating of the universe. However, the electroweak interactions and

physics below the phase transition would be unaffected.
Although we have looked at a specific SO(1 0) symmetry breaking, the

results apply to most other breakings of this group, since they have the same

fermion mass terms. In a more arbitrary U(1) 3 (Standard Model) theory, the

ratio of m and n could be greater than 1, in which case extra zero modes

would be created at the electroweak phase transition.

Although we have only considered one type of model, the arguments
can be applied to any theory with fermions coupling to cosmic strings. This

has been done for a general theory in ref. 16. The results obtained agree with

simpler index theorems derived previously [17].

4. INDEX THEOREMS AND SPECTRAL FLOW

I have shown that zero modes can acquire masses at subsequent phase

transitions. No matter how small this mass, the spectrum of the Dirac operator

changes significantly. If we compare the Dirac spectrum with a zero mode

and a low-lying bound state with infinitesimal mass (Fig. 1), we see that an
arbitrarily small perturbation to the zero mode introduces an entire new

branch to the spectrum. Any massive state gives a spectrum that is symmetric

about both the w and k axes; there is always a reference frame in which the

particle is at rest and others where it is moving up or down the string.

Conversely, the zero mode, which is massless, can only move in one direction

along the string and its spectrum is asymmetric. The transition from zero
mode to low-lying bound state causes drastic changes in the spectrum and

can be brought about by infinitesimal changes in the value of one Higgs

field. If we consider the species with the zero mode alone, this infinite

susceptibility to the background fields appears unphysical. However, when

we include the massless neutrino in the SO(1 0) model the spectral changes

are less worrying. For a small coupling between the two neutrinos, both the
before and after spectra have a continuum of massless or nearly massless

states. These states can be used to build the extra branch of the perturbed

zero-mode spectrum, allowing small changes in the overall spectrum for small

changes in the background fields. This observation leads me to conjecture
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Fig. 1. The Dirac spectrum with a zero mode (left) and a very low lying bound state (right).

Both spectra also have a bound state and continuum.

that zero modes can be removed only if they become mixed with other
massless states.

At the electroweak phase transition the neutrino zero mode will mix

with the left-handed neutrino field to form a bound state. Its mass will be

proportional to the neutrino mass inside the string, which is of order

m3
u /m2

GUT [18 ]. High-energy currents are free to scatter into left-handed neutri-

nos off the string, so the maximal current will be very small. This will be
insufficient to stabilize vortons. Additionally, the current will be spread over

the region of electroweak symmetry restoration. This is far larger than the

size of a vorton, which is a couple of orders of magnitude greater than the

GUT string radius [6 ]. The current on one part of the string will then interact

with current on the opposite side of the loop, increasing the vorton’ s instability.

Thus vortons in SO(1 0) will certainly decay at the electroweak phase
transition.

Although I have discussed a specific type of GUT, many of the ideas I

have used apply to a far wider range of theories. Fermion zero modes are

generic in supersymmetric theories [19 ]. They, too, can be destroyed at lower

temperatures, in this case by supersymmetry breaking [20].

5. CONCLUSIONS

If fermions couple to a cosmic string Higgs field, their spectrum will

gain extra states which are confined to the string core. The existence of zero-
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energy fermion states on strings can be examined analytically. Such solutions

can easily be extended to give massless currents, which will have significant

cosmological effects. In this paper I have investigated the existence of fermion
zero modes in two simple models, one of which is contained in a realistic

SO(10) GUT. We have seen that the microphysics of cosmic strings can

be influenced by subsequent phase transitions. Fermion zero modes, and

consequently lightlike currents on the strings, can be created or destroyed

by such phase transitions. In determining whether or not a cosmic string

carries conserved currents it is not enough to just consider them at formation,
but one must follow the microphysics through the multiple phase transitions

that the system undergoes.

It is possible for vortons formed at high energy to dissipate after a

subsequent phase transition if the relevant fermion zero mode does not survive

the phase transition, thus vorton bounds could be evaded. I have demonstrated

this effect by analyzing the neutrino zero modes of an SO(1 0) model in detail.
Prior to dissipation there could be a period of vorton domination; after the

phase transition the universe would reheat and then evolve as normal.

The right-handed neutrino zero modes are removed at the electroweak

phase transition when they mix with the Standard Model left-handed neutri-

nos. By considering spectral flow we have seen that zero modes and massless
currents can only be removed by mixing them with another massless field.

The resulting state will be a bound state or massive current. In the model

considered, the maximal current that the string can support after the electro-

weak phase transition is proportional to the left-handed neutrino mass. Such

currents are far too small to stabilize vortons.
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